Monocular Depth Estimation by Learning from Heterogeneous Datasets

نویسندگان

  • Akhil Gurram
  • Onay Urfalioglu
  • Ibrahim Halfaoui
  • Fahd Bouzaraa
  • Antonio M. Lopez
چکیده

Depth estimation provides essential information to perform autonomous driving and driver assistance. Especially, Monocular Depth Estimation is interesting from a practical point of view, since using a single camera is cheaper than many other options and avoids the need for continuous calibration strategies as required by stereo-vision approaches. State-of-theart methods for Monocular Depth Estimation are based on Convolutional Neural Networks (CNNs). A promising line of work consists of introducing additional semantic information about the traffic scene when training CNNs for depth estimation. In practice, this means that the depth data used for CNN training is complemented with images having pixelwise semantic labels, which usually are difficult to annotate (e.g. crowded urban images). Moreover, so far it is common practice to assume that the same raw training data is associated with both types of ground truth, i.e., depth and semantic labels. The main contribution of this paper is to show that this hard constraint can be circumvented, i.e., that we can train CNNs for depth estimation by leveraging the depth and semantic information coming from heterogeneous datasets. In order to illustrate the benefits of our approach, we combine KITTI depth and Cityscapes semantic segmentation datasets, outperforming stateof-the-art results on Monocular Depth Estimation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Domain Independence for Learning-based Monocular Depth Estimation

Modern autonomous mobile robots require a strong understanding of their surroundings in order to safely operate in cluttered and dynamic environments. Monocular depth estimation offers a geometry-independent paradigm to detect free, navigable space with minimum space and power consumption. These represent highly desirable features, especially for micro aerial vehicles. In order to guarantee rob...

متن کامل

A Compromise Principle in Deep Monocular Depth Estimation

Monocular depth estimation, which plays a key role in understanding 3D scene geometry, is fundamentally an illposed problem. Existing methods based on deep convolutional neural networks (DCNNs) have examined this problem by learning convolutional networks to estimate continuous depth maps from monocular images. However, we find that training a network to predict a high spatial resolution contin...

متن کامل

Monocular Depth Estimation with Hierarchical Fusion of Dilated CNNs and Soft-Weighted-Sum Inference

Monocular depth estimation is a challenging task in complex compositions depicting multiple objects of diverse scales. Albeit the recent great progress thanks to the deep convolutional neural networks (CNNs), the state-of-the-art monocular depth estimation methods still fall short to handle such real-world challenging scenarios. In this paper, we propose a deep end-to-end learning framework to ...

متن کامل

Learning Depth from Single Images with Deep Neural Network Embedding Focal Length

Learning depth from a single image, as an important issue in scene understanding, has attracted a lot of attention in the past decade. The accuracy of the depth estimation has been improved from conditional Markov random fields, non-parametric methods, to deep convolutional neural networks most recently. However, there exist inherent ambiguities in recovering 3D from a single 2D image. In this ...

متن کامل

AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation

Supervised deep learning methods have shown promising results for the task of monocular depth estimation; but acquiring ground truth is costly, and prone to noise as well as inaccuracies. While synthetic datasets have been used to circumvent above problems, the resultant models do not generalize well to natural scenes due to the inherent domain shift. Recent adversarial approaches for domain ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018